If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+7y+9=0
a = 1; b = 7; c = +9;
Δ = b2-4ac
Δ = 72-4·1·9
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{13}}{2*1}=\frac{-7-\sqrt{13}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{13}}{2*1}=\frac{-7+\sqrt{13}}{2} $
| 18/x=0.02 | | 4=2(x+1)² | | 2x+2-4x=-3x-12+8-x | | -7(3y-1)+8y=2(y+6) | | (57+x)+(25x)+(45x)=180 | | √2x-1+5=14√2x-1 | | 2x+2-4=-3x-12+8-x | | (3x²+1)/x=x | | (4x-20)+(x+15)=180 | | 32=5v-8 | | 3x-5x=48 | | 4r=3(1) | | (x-1)+6=0 | | 7y-28=52+3y | | 2x^2+11=3x+21 | | 3(x-3)+6=3(2x-5) | | 6x-8=3x-2 | | 3n-0.16=3.5 | | x+70+131=180 | | 8x+62+3x+41=180 | | 2x+4+6=0 | | 6n=42=4n | | 4x-3=10x2 | | 8f+5=3f+35 | | 8x+62=3x+41 | | x+(13)=-5 | | 50=3s+48-2s+8 | | -9=-x÷12+5 | | -9=-h÷12+5 | | 2x-5=6x=35 | | 1/4p=1/22 | | 4/7t=0 |